Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway

نویسندگان

  • Tharine Dal-Cim
  • Simone Molz
  • Javier Egea
  • Esther Parada
  • Alejandro Romero
  • Josiane Budni
  • Maria D. Martín de Saavedra
  • Laura del Barrio
  • Carla I. Tasca
  • Manuela G. López
چکیده

Mitochondrial perturbation and oxidative stress are key factors in neuronal vulnerability in several neurodegenerative diseases or during brain ischemia. Here we have investigated the protective mechanism of action of guanosine, the guanine nucleoside, in a human neuroblastoma cell line, SH-SY5Y, subjected to mitochondrial oxidative stress. Blockade of mitochondrial complexes I and V with rotenone plus oligomycin (Rot/oligo) caused a significant decrease in cell viability and an increase in ROS production. Guanosine that the protective effect of guanosine incubated concomitantly with Rot/oligo abolished Rot/oligo-induced cell death and ROS production in a concentration dependent manner; maximum protection was achieved at the concentration of 1mM. The cytoprotective effect afforded by guanosine was abolished by adenosine A(1) or A(2A) receptor antagonists (DPCPX or ZM241385, respectively), or by a large (big) conductance Ca(2+)-activated K(+) channel (BK) blocker (charybdotoxin). Evaluation of signaling pathways showed that the protective effect of guanosine was not abolished by a MEK inhibitor (PD98059), by a p38(MAPK) inhibitor (SB203580), or by a PKC inhibitor (cheleritrine). However, when blocking the PI3K/Akt pathway with LY294002, the neuroprotective effect of guanosine was abolished. Guanosine increased Akt and p-Ser-9-GSK-3β phosphorylation confirming this pathway plays a key role in guanosine's neuroprotective effect. Guanosine induced the antioxidant enzyme heme oxygenase-1 (HO-1) expression. The protective effects of guanosine were prevented by heme oxygenase-1 inhibitor, SnPP. Moreover, bilirubin, an antioxidant and physiologic product of HO-1, is protective against mitochondrial oxidative stress. In conclusion, our results show that guanosine can afford protection against mitochondrial oxidative stress by a signaling pathway that implicates PI3K/Akt/GSK-3β proteins and induction of the antioxidant enzyme HO-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IGF-1 protects SH-SY5Y cells against MPP+-induced apoptosis via PI3K/PDK-1/Akt pathway

Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-m...

متن کامل

Glycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells

Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...

متن کامل

Neuroprotection by epigallo catechin gallate against bupivacaine anesthesia induced toxicity involves modulation of PI3/Akt/PTEN signalling in N2a and SH-SY5Y cells.

Bupivacaine, an amide type long-acting local anaesthetic is commonly employed for epidural anesthesia and as well for nerve blockades. However, studies have shown neurotoxicity following local administration of bupivacaine raising concerns over the use of the drug. Compounds that could minimize or inhibit toxic effects of bupivacaine are of high value in operative settings and in pain managemen...

متن کامل

Nicorandil inhibits oxidative stress and amyloid-β precursor protein processing in SH-SY5Y cells overexpressing APPsw.

It has been demonstrated that ATP-sensitive potassium (KATP) channel activation has neuroprotective effects against neuronal damage induced by hypoxia, ischemia or metabolism stress. This study investigated the multiply protective effects of KATP channel opener nicorandil against neurotoxicity in SH-SY5Y cells transiently transfected with Swedish mutant APP (APPsw) and also the potential involv...

متن کامل

Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing heme oxygenase-1 via phosphatidylinositol 3-kinase/Akt.

We investigated the mechanism of the neuroprotective properties of chondroitin sulfate (CS), an endogenous perineuronal net glycosaminoglycan, in human neuroblastoma SH-SY5Y cells subjected to oxidative stress. Preincubation with CS for 24 h afforded concentration-dependent protection against H2O2-induced toxicity (50 microM for 24 h) measured as lactic dehydrogenase released to the incubation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurochemistry International

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012